Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Cell Rep Med ; : 101548, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38703763

ABSTRACT

While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.

2.
Circ Res ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662804

ABSTRACT

Rationale: The biological mechanisms linking environmental exposures with cardiovascular disease (CVD) pathobiology are incompletely understood. We sought to identify circulating proteomic signatures of environmental exposures, and examine their associations with cardiometabolic and respiratory disease (CMD) in observational cohort studies. Methods: We tested the relations of >6500 circulating proteins with 29 environmental exposures across the built environment, green space, air pollution, temperature, and social vulnerability indicators in nearly 3000 participants of the Coronary Artery Risk Development in Young Adults (CARDIA) study across 4 centers using penalized and ordinary linear regression. In >3500 participants from the Framingham Heart Study (FHS) and Jackson Heart Study (JHS), we evaluated the prospective relations of proteomic signatures of the envirome with CVD and mortality using Cox models.Results: Proteomic signatures of the envirome identified novel/established CVD-relevant pathways including DNA damage, fibrosis, inflammation, and mitochondrial function. The proteomic signatures of the envirome were broadly related to CMD and respiratory phenotypes (e.g., body mass index, lipids, and left ventricular mass) in CARDIA, with replication in FHS/JHS. A proteomic signature of social vulnerability was associated with a composite of CVD/mortality (1428 events; FHS: HR=1.16, 95% CI 1.08-1.24, P=1.77e-05; JHS: HR=1.25 95% CI 1.13-1.38, P=6.38e-06; HR expressed as per 1 standard deviation increase in proteomic signature), robust to adjustment for known clinical risk factors. Conclusions: Environmental exposures are related to an inflammatory-metabolic proteome, which identifies individuals with CMD and respiratory phenotypes and outcomes. Future work examining the dynamic impact of the environment on human cardiometabolic health is warranted.

3.
medRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645000

ABSTRACT

The emerging field of precision nutrition is based on the notion that inter-individual responses across diets of different calorie-macronutrient content may contribute to inter-individual differences in metabolism, adiposity, and weight gain. Free-living diet studies have been traditionally challenged by difficulties in controlling adherence to prescribed calories and macronutrient content and rarely allow a period of metabolic stability prior to metabolic measures (to minimize influences of weight changes). In this context, key physiologic measures central to precision nutrition responses may be most precisely quantified via whole room indirect calorimetry over 24-h, in which precise control of activity and nutrition can be achieved. In addition, these studies represent unique "N of 1" human crossover metabolic-physiologic experiments during which specific molecular pathways central to nutrient metabolism may be discerned. Here, we quantified 263 circulating metabolites during a ≈40-day inpatient admission in which up to 94 participants underwent seven monitored 24-h nutritional interventions of differing macronutrient composition in a whole-room indirect calorimeter to capture precision metabolic responses. Broadly, we observed heterogenous responses in metabolites across dietary chambers, with the exception of carnitines which tracked with 24-h respiratory quotient. We identified excursions in shared metabolic species (e.g., carnitines, glycerophospholipids, amino acids) that mapped onto gold-standard calorimetric measures of substrate oxidation preference and lipid availability. These findings support a coordinated metabolic-physiologic response to nutrition, highlighting the relevance of these controlled settings to uncover biological pathways of energy utilization during precision nutrition studies.

4.
Circ Genom Precis Med ; 17(1): e004192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38323454

ABSTRACT

BACKGROUND: The circulating proteome may encode early pathways of diabetes susceptibility in young adults for surveillance and intervention. Here, we define proteomic correlates of tissue phenotypes and diabetes in young adults. METHODS: We used penalized models and principal components analysis to generate parsimonious proteomic signatures of diabetes susceptibility based on phenotypes and on diabetes diagnosis across 184 proteins in >2000 young adults in the CARDIA (Coronary Artery Risk Development in Young Adults study; mean age, 32 years; 44% women; 43% Black; mean body mass index, 25.6±4.9 kg/m2), with validation against diabetes in >1800 individuals in the FHS (Framingham Heart Study) and WHI (Women's Health Initiative). RESULTS: In 184 proteins in >2000 young adults in CARDIA, we identified 2 proteotypes of diabetes susceptibility-a proinflammatory fat proteotype (visceral fat, liver fat, inflammatory biomarkers) and a muscularity proteotype (muscle mass), linked to diabetes in CARDIA and WHI/FHS. These proteotypes specified broad mechanisms of early diabetes pathogenesis, including transorgan communication, hepatic and skeletal muscle stress responses, vascular inflammation and hemostasis, fibrosis, and renal injury. Using human adipose tissue single cell/nuclear RNA-seq, we demonstrate expression at transcriptional level for implicated proteins across adipocytes and nonadipocyte cell types (eg, fibroadipogenic precursors, immune and vascular cells). Using functional assays in human adipose tissue, we demonstrate the association of expression of genes encoding these implicated proteins with adipose tissue metabolism, inflammation, and insulin resistance. CONCLUSIONS: A multifaceted discovery effort uniting proteomics, underlying clinical susceptibility phenotypes, and tissue expression patterns may uncover potentially novel functional biomarkers of early diabetes susceptibility in young adults for future mechanistic evaluation.


Subject(s)
Diabetes Mellitus, Type 2 , Proteomics , Humans , Female , Young Adult , Adult , Male , Adipose Tissue , Inflammation , Biomarkers/metabolism
5.
medRxiv ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38352354

ABSTRACT

Background: Fluorodeoxyglucose positron emission tomography (FDG PET) with glycolytic metabolism suppression plays a pivotal role in diagnosing cardiac sarcoidosis. Reorientation of images to match perfusion datasets is critical and myocardial segmentation enables consistent image scaling and quantification. However, both are challenging and labor intensive. We developed a 3D U-Net deep learning (DL) algorithm for automated myocardial segmentation in cardiac sarcoidosis FDG PET. Methods: The DL model was trained on 316 patients' FDG PET scans, and left ventricular contours derived from perfusion datasets. Qualitative analysis of clinical readability was performed to compare DL segmentation with the current automated method on a 50-patient test subset. Additionally, left ventricle displacement and angulation, as well as SUVmax sampling were compared to inter-user reproducibility results. Results: DL segmentation enhanced readability scores in over 90% of cases compared to the standard segmentation currently used in the software. DL segmentation performed similarly to a trained technologist, surpassing standard segmentation for left ventricle displacement and angulation, as well as correlation of SUVmax. Conclusion: The DL-based automated segmentation tool presents a marked improvement in the processing of cardiac sarcoidosis FDG PET, promising enhanced clinical workflow. This tool holds significant potential for accelerating clinical practice and improving consistency and quality. Further research with varied datasets is warranted to broaden its applicability.

6.
Aging Cell ; 23(4): e14090, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287525

ABSTRACT

Aging is increasingly thought to involve dysregulation of metabolism in multiple organ systems that culminate in decreased functional capacity and morbidity. Here, we seek to understand complex interactions among metabolism, aging, and systems-wide phenotypes across the lifespan. Among 2469 adults (mean age 74.7 years; 38% Black) in the Health, Aging and Body Composition study we identified metabolic cross-sectionally correlates across 20 multi-dimensional aging-related phenotypes spanning seven domains. We used LASSO-PCA and bioinformatic techniques to summarize metabolome-phenome relationships and derive metabolic scores, which were subsequently linked to healthy aging, mortality, and incident outcomes (cardiovascular disease, disability, dementia, and cancer) over 9 years. To clarify the relationship of metabolism in early adulthood to aging, we tested association of these metabolic scores with aging phenotypes/outcomes in 2320 participants (mean age 32.1, 44% Black) of the Coronary Artery Risk Development in Young Adults (CARDIA) study. We observed significant overlap in metabolic correlates across the seven aging domains, specifying pathways of mitochondrial/cellular energetics, host-commensal metabolism, inflammation, and oxidative stress. Across four metabolic scores (body composition, mental-physical performance, muscle strength, and physical activity), we found strong associations with healthy aging and incident outcomes, robust to adjustment for risk factors. Metabolic scores for participants four decades younger in CARDIA were related to incident cardiovascular, metabolic, and neurocognitive performance, as well as long-term cardiovascular disease and mortality over three decades. Conserved metabolic states are strongly related to domain-specific aging and outcomes over the life-course relevant to energetics, host-commensal interactions, and mechanisms of innate immunity.


Subject(s)
Cardiovascular Diseases , Healthy Aging , Young Adult , Humans , Adult , Aged , Longevity , Aging , Risk Factors
7.
Obesity (Silver Spring) ; 32(2): 423-435, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38269471

ABSTRACT

OBJECTIVE: Genetic studies have suggested that the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine have a causal association with type 2 diabetes (T2D). However, inferences are based on a limited number of genetic loci associated with BCAAs. METHODS: Instrumental variables (IVs) for each BCAA were constructed and validated using large well-powered data sets and their association with T2D was tested using a two-sample inverse-variance weighted Mendelian randomization approach. Sensitivity analyses were performed to ensure the accuracy of the findings. A reverse association was assessed using instrumental variables for T2D. RESULTS: Estimated effect sizes between BCAA IVs and T2D, excluding outliers, were as follows: valine (ß = 0.14 change in log-odds per SD change in valine, 95% CI: -0.06 to 0.33, p = 0.17), leucine (ß = 0.15, 95% CI: -0.02 to 0.32, p = 0.09), and isoleucine (ß = 0.13, 95% CI: -0.08 to 0.34, p = 0.24). In contrast, T2D IVs were positively associated with each BCAA, i.e., valine (ß = 0.08 per SD change in levels per log-odds change in T2D, 95% CI: 0.05 to 0.10, p = 1.8 × 10-9 ), leucine (ß = 0.06, 95% CI: 0.04 to 0.09, p = 4.5 × 10-8 ), and isoleucine (ß = 0.06, 95% CI: 0.04 to 0.08, p = 2.8 × 10-8 ). CONCLUSIONS: These data suggest that the BCAAs are not mediators of T2D risk but are biomarkers of diabetes.


Subject(s)
Amino Acids, Branched-Chain , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Mendelian Randomization Analysis , Isoleucine/genetics , Leucine/genetics , Valine/genetics
8.
J Nucl Cardiol ; 32: 101810, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38286326

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) is the non-invasive gold standard for non-invasively determining left ventricular volumes (LVVs) and ejection fraction (EF). We aimed to assess the accuracy of LVV and left ventricular ejection fraction measured by positron emission tomography (PET) as compared to CMR. METHODS: Patients who underwent both PET and CMR within 1 year were identified from prospective institutional registries. Analysis was performed to evaluate the agreement between the raw and body-surface-area-normalized left ventricular volume (LVV) and EF derived from PET vs. those derived from CMR. RESULTS: The study population consisted of 669 patients (mean age 62 ± 13 years, 65% male). The median (interquartile range [IQR]) duration between CMR and PET imaging was 36 (7-118) days. The median (IQR) EF values were 52% (38-63%) on CMR and 53% (37-65%) on PET (mean difference: 0.53% ± 9.1, P = 0.129) with a strong correlation (Spearman rho = 0.84, P < 0.001; Intraclass Correlation Coefficient 0.84, 95% confidence interval [CI]: 0.82-0.86, P < 0.001; Lin's concordance correlation coefficient was 0.844, 95% CI: 0.822 to 0.865). Results were similar with LVV, normalized LVV/EF, and in subgroups of patients with reduced EF, coronary artery disease scar, and LV hypertrophy as well as in patients with defibrillators. However, PET tended to underestimate LVV compared to CMR. CONCLUSION: Our analysis showed a strong correlation of EF and LVV by PET against a reference standard of CMR, whereas PET significantly underestimated LVV, but not EF, compared to CMR.


Subject(s)
Rubidium , Ventricular Function, Left , Humans , Male , Middle Aged , Aged , Female , Stroke Volume , Prospective Studies , Tomography, X-Ray Computed , Positron-Emission Tomography , Heart Ventricles/diagnostic imaging , Magnetic Resonance Spectroscopy
9.
Am J Clin Nutr ; 119(1): 29-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865185

ABSTRACT

BACKGROUND: The potential role for choline metabolite trimethylamine N-oxide (TMAO) in cardiovascular disease (CVD) has garnered much attention, but there have been limited data from diverse population-based cohorts. Furthermore, few studies have included circulating choline and betaine, which can serve as precursors to TMAO and may independently influence CVD. OBJECTIVE: We quantified prospective associations between 3 choline metabolites and 19-y incident CVD in a population-based cohort and tested effect modification of metabolite-CVD associations by kidney function. METHODS: Data were from the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a prospective cohort with recruitment from 4 US urban centers (year 0: 1985-1986, n = 5115, ages 18-30). The analytic sample included 3444 White and Black males and females, aged 33 to 45, who attended the year 15 follow-up exam and did not have prevalent CVD. TMAO, choline, and betaine were quantitated from stored plasma (-70°C) using liquid-chromatography mass-spectrometry. Nineteen-year incident CVD events (n = 221), including coronary heart disease and stroke, were identified through adjudicated hospitalization records and linkage with the National Death Register. RESULTS: Plasma choline was positively associated with CVD in Cox proportional hazards regression analysis adjusted for demographics, health behaviors, CVD risk factors, and metabolites (hazard ratio: 1.24; 95% CI: 1.09, 1.40 per standard deviation-unit choline). TMAO and betaine were not associated with CVD in an identically adjusted analysis. There was statistical evidence for effect modification by kidney function with CVD positively associated with TMAO and negatively associated with betaine at lower values of estimated glomerular filtration rate (interaction P values: 0.0046 and 0.020, respectively). CONCLUSIONS: Our findings are consistent with a positive association between plasma choline and incident CVD. Among participants with lower kidney function, TMAO was positively, and betaine negatively, associated with CVD. These results further our understanding of the potential role for choline metabolism on CVD risk.


Subject(s)
Betaine , Cardiovascular Diseases , Male , Female , Humans , Young Adult , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Coronary Vessels , Choline , Methylamines , Risk Factors
10.
J Heart Lung Transplant ; 43(3): 432-441, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37813130

ABSTRACT

BACKGROUND: Cardiac allograft vasculopathy (CAV) limits long-term survival after heart transplantation (HT). This study evaluates the relationship between clinically significant cytomegalovirus infection (CS-CMVi) and CAV using cardiac positron emission tomography (PET). METHODS: We retrospectively evaluated HT patients from 2005 to 2019 who underwent cardiac PET for CAV evaluation. Multivariable linear and logistic regression models were used to evaluate the association between CS-CMVi and myocardial flow reserve (MFR). Kaplan-Meier and Cox regression analyses were used to assess the relationship between CS-CMV, MFR, and clinical outcomes. RESULTS: Thirty-two (31.1%) of 103 HT patients developed CS-CMVi at a median 9 months after HT. Patients with CS-CMVi had a significantly lower MFR at year 1 and 3, driven by reduction in stress myocardial blood flow. Patients with CS-CMVi had a faster rate of decline in MFR compared to those without infection (-0.10 vs -0.06 per year, p < 0.001). CS-CMVi was an independent predictor of abnormal MFR (<2.0) (odds ratio: 3.8, 95% confidence intervals (CI): 1.4-10.7, p = 0.001) and a lower MFR (ß = -0.39, 95% CI: -0.63 to -0.16, p = 0.001) at year 3. In adjusted survival analyses, both abnormal MFR (log-rank p < 0.001; hazard ratio [HR]: 5.7, 95% CI: 4.2-7.2) and CS-CMVi (log-rank p = 0.028; HR: 3.3, 95% CI: 1.8-4.8) were significant predictors of the primary outcome of all-cause mortality, retransplantation, heart failure hospitalization, and acute coronary syndrome. CONCLUSIONS: CS-CMVi is an independent predictor of reduced MFR following HT. These findings suggest that CMV infection is an important risk factor in the development and progression of CAV.


Subject(s)
Coronary Artery Disease , Cytomegalovirus Infections , Heart Transplantation , Humans , Retrospective Studies , Heart Transplantation/adverse effects , Myocardium , Heart , Cytomegalovirus Infections/complications , Positron-Emission Tomography , Coronary Artery Disease/etiology
11.
Geroscience ; 46(2): 2371-2389, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37968423

ABSTRACT

Older women and Black individuals are more likely to experience frailty. A metabolomic characterization of frailty may help inform more effective interventions aimed at improving health, reducing disparities, and preventing frailty with aging. We sought to identify metabolites and pathways associated with vigor to frailty and determine whether associations differed by sex and/or race among n = 2189 older Black and White men and women from the Health, Aging, and Body Composition (Health ABC) study. Fasting plasma metabolites were measured using liquid chromatography-mass spectrometry. Vigor to frailty was based on weight change, physical activity, gait speed, grip strength, and usual energy. We used linear regression of a single metabolite on vigor to frailty, adjusting for age, sex, race, study site, and multiple comparisons using a Bonferroni correction. Among 500 metabolites, 113 were associated with vigor to frailty (p < 0.0001). Associations between metabolites and vigor to frailty did not differ significantly by race and/or sex. Lower amino acids, glycerophospholipids, sphingolipids, and dehydroepiandrosterone sulfate and higher acylcarnitines, fatty acids, amino acid derivatives, organic acids, carbohydrates, citric acid cycle metabolites, and trimethylamine oxide were associated with frailer scores. Pathway analyses identified the citric acid cycle as containing more frailty-associated metabolites than expected by chance (p = 0.00005). Calories and protein intake did not differ by vigor to frailty. Frailer Health ABC participants may have lower utilization of energy pathways, potentially as a result of less demand and less efficient utilization of similar amounts of nutrients when compared to more vigorous participants.


Subject(s)
Frailty , Metabolome , Aged , Female , Humans , Male , Aging , Hand Strength , Independent Living , Black or African American , White
12.
Radiol Cardiothorac Imaging ; 5(5): e220288, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37908554

ABSTRACT

Purpose: To characterize the recovery of diagnostic cardiovascular procedure volumes in U.S. and non-U.S. facilities in the year following the initial COVID-19 outbreak. Materials and Methods: The International Atomic Energy Agency (IAEA) coordinated a worldwide study called the IAEA Noninvasive Cardiology Protocols Study of COVID-19 2 (INCAPS COVID 2), collecting data from 669 facilities in 107 countries, including 93 facilities in 34 U.S. states, to determine the impact of the pandemic on diagnostic cardiovascular procedure volumes. Participants reported volumes for each diagnostic imaging modality used at their facility for March 2019 (baseline), April 2020, and April 2021. This secondary analysis of INCAPS COVID 2 evaluated differences in changes in procedure volume between U.S. and non-U.S. facilities and among U.S. regions. Factors associated with return to prepandemic volumes in the United States were also analyzed in a multivariable regression analysis. Results: Reduction in procedure volumes in April 2020 compared with baseline was similar for U.S. and non-U.S. facilities (-66% vs -71%, P = .27). U.S. facilities reported greater return to baseline in April 2021 than did all non-U.S. facilities (4% vs -6%, P = .008), but there was no evidence of a difference when comparing U.S. facilities with non-U.S. high-income country (NUHIC) facilities (4% vs 0%, P = .18). U.S. regional differences in return to baseline were observed between the Midwest (11%), Northeast (9%), South (1%), and West (-7%, P = .03), but no studied factors were significant predictors of 2021 change from prepandemic baseline. Conclusion: The reductions in cardiac testing during the early pandemic have recovered within a year to prepandemic baselines in the United States and NUHICs, while procedure volumes remain depressed in lower-income countries.Keywords: SPECT, Cardiac, Epidemiology, Angiography, CT Angiography, CT, Echocardiography, SPECT/CT, MR Imaging, Radionuclide Studies, COVID-19, Cardiovascular Imaging, Diagnostic Cardiovascular Procedure, Cardiovascular Disease, Cardiac Testing Supplemental material is available for this article. © RSNA, 2023.

13.
medRxiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37961713

ABSTRACT

Impaired microvascular and vasomotor function is a common consequence of aging, diabetes, and other risk factors, and is associated with adverse cardiac outcomes. Such impairments are not readily identified by standard clinical methods of cardiovascular testing such as coronary angiography and noninvasive single photon emission tomography (SPECT) myocardial perfusion imaging (MPI). We hypothesized that signals embedded within stress electrocardiograms (ECGs) identify individuals with microvascular and vasomotor dysfunction. Methods: We developed and validated a novel convolutional neural network (CNN) using stress and rest ECG data (ECG-Flow) to identify patients with impaired myocardial flow reserve (MFR) on quantitative positron emission tomography (PET) MPI (N=3887). Diagnostic accuracy was validated with an internal holdout set of patients undergoing stress PET MPI (N=963). The prognostic association of ECG-Flow with mortality was then evaluated in a separate cohort of patients undergoing SPECT MPI (N=5102). Results: ECG-Flow achieved good diagnostic accuracy for impaired MFR in the holdout PET cohort (AUC, sensitivity, specificity: 0.737, 71.1%, 65.7%). Abnormal ECG-Flow was found to be significantly associated with mortality in both PET holdout and SPECT MPI cohorts (adjusted HR 2.12 [95 ρ CI 1.45, 2.10], ρ = 0.0001, and 2.07 [1.82, 2.36], ρ < 0.0001, respectively). Conclusion: Signals predictive of microvascular and vasomotor dysfunction are embedded in stress ECG waveforms. These signals can be identified by deep learning methods and are related to prognosis in patients undergoing both stress PET and SPECT MPI.

14.
J Am Heart Assoc ; 12(21): e029619, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37850464

ABSTRACT

Background During exercise, a healthy arterial system facilitates increased blood flow and distributes it effectively to essential organs. Accordingly, we sought to understand how arterial stiffening might impair cardiorespiratory fitness in community-dwelling individuals. Methods and Results Arterial tonometry and maximum effort cardiopulmonary exercise testing were performed on Framingham Heart Study participants (N=2898, age 54±9 years, 53% women, body mass index 28.1±5.3 kg/m2). We related 5 arterial stiffness measures (carotid-femoral pulse wave velocity [CFPWV]: a measure of aortic wall stiffness; central pulse pressure, forward wave amplitude, characteristic impedance: measures of pressure pulsatility; and augmentation index: a measure of relative wave reflection) to multidimensional exercise responses using linear models adjusted for age, sex, resting heart rate, habitual physical activity, and clinical risk factors. Greater CFPWV, augmentation index, and characteristic impedance were associated with lower peak oxygen uptake (VO2; all P<0.0001). We observed consistency of associations of CFPWV with peak oxygen uptake across age, sex, and cardiovascular risk profile (interaction P>0.05). However, the CFPWV-peak oxygen uptake relation was attenuated in individuals with obesity (P=0.002 for obesity*CFPWV interaction). Higher CPFWV, augmentation index, and characteristic impedance were also related to cardiopulmonary exercise testing measures reflecting adverse O2 kinetics and lower stroke volume and peripheral O2 extraction but not to ventilatory efficiency, a prognostic measure of right ventricular-pulmonary vascular performance. Conclusions Our findings delineate relations of arterial stiffness and cardiorespiratory fitness in community-dwelling individuals. Future studies are warranted to evaluate whether the physiological measures implicated here may represent potential targets for improving cardiorespiratory fitness in the general population.


Subject(s)
Cardiorespiratory Fitness , Vascular Stiffness , Humans , Female , Middle Aged , Male , Vascular Stiffness/physiology , Pulse Wave Analysis , Obesity , Oxygen
15.
Res Sq ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37790512

ABSTRACT

Circulating metabolites act as biomarkers of dysregulated metabolism, and may inform disease pathophysiology. A portion of the inter-individual variability in circulating metabolites is influenced by common genetic variation. We evaluated whether a genetics-based "virtual" metabolomics approach can identify novel metabolite-disease associations. We examined the association between polygenic scores for 726 metabolites (derived from OMICSPRED) with 1,247 clinical phenotypes in 57,735 European ancestry and 15,754 African ancestry participants from the BioVU DNA Biobank. We probed significant relationships through Mendelian randomization (MR) using genetic instruments constructed from the METSIM Study, and validated significant MR associations using independent GWAS of candidate phenotypes. We found significant associations between 336 metabolites and 168 phenotypes in European ancestry and 107 metabolites and 56 phenotypes among African ancestry. Of these metabolite-disease pairs, MR analyses confirmed associations between 73 metabolites and 53 phenotypes in European ancestry. Of 22 metabolite-phenotype pairs evaluated for replication in independent GWAS, 16 were significant (false discovery rate p<0.05). Validated findings included the metabolites bilirubin and X-21796 with cholelithiasis, phosphatidylcholine(16:0/22:5n3,18:1/20:4) and arachidonate(20:4n6) with inflammatory bowel disease and Crohn's disease, and campesterol with coronary artery disease and myocardial infarction. These associations may represent biomarkers or potentially targetable mediators of disease risk.

16.
Eur J Nucl Med Mol Imaging ; 51(1): 123-135, 2023 12.
Article in English | MEDLINE | ID: mdl-37787848

ABSTRACT

BACKGROUND AND AIMS: Although treatment of ischemia-causing epicardial stenoses may improve symptoms of ischemia, current evidence does not suggest that revascularization improves survival. Conventional myocardial ischemia imaging does not uniquely identify diffuse atherosclerosis, microvascular dysfunction, or nonobstructive epicardial stenoses. We sought to evaluate the prognostic value of integrated myocardial flow reserve (iMFR), a novel noninvasive approach to distinguish the perfusion impact of focal atherosclerosis from diffuse coronary disease. METHODS: This study analyzed a large single-center registry of consecutive patients clinically referred for rest-stress myocardial perfusion positron emission tomography. Cox proportional hazards modeling was used to assess the association of two previously reported and two novel perfusion measures with mortality risk: global stress myocardial blood flow (MBF); global myocardial flow reserve (MFR); and two metrics derived from iMFR analysis: the extents of focal and diffusely impaired perfusion. RESULTS: In total, 6867 patients were included with a median follow-up of 3.4 years [1st-3rd quartiles, 1.9-5.0] and 1444 deaths (21%). Although all evaluated perfusion measures were independently associated with death, diffusely impaired perfusion extent (hazard ratio 2.65, 95%C.I. [2.37-2.97]) and global MFR (HR 2.29, 95%C.I. [2.08-2.52]) were consistently stronger predictors than stress MBF (HR 1.62, 95%C.I. [1.46-1.79]). Focally impaired perfusion extent (HR 1.09, 95%C.I. [1.03-1.16]) was only moderately related to mortality. Diffusely impaired perfusion extent remained a significant independent predictor of death when combined with global MFR (p < 0.0001), providing improved risk stratification (overall net reclassification improvement 0.246, 95%C.I. [0.183-0.310]). CONCLUSIONS: The extent of diffusely impaired perfusion is a strong independent and additive marker of mortality risk beyond traditional risk factors, standard perfusion imaging, and global MFR, while focally impaired perfusion is only moderately related to mortality.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Humans , Constriction, Pathologic , Coronary Artery Disease/diagnostic imaging , Positron-Emission Tomography , Perfusion , Ischemia , Myocardial Perfusion Imaging/methods , Coronary Circulation
17.
J Card Fail ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37890655

ABSTRACT

BACKGROUND: Positron emission tomography (PET) myocardial flow reserve (MFR) is a noninvasive method of detecting cardiac allograft vasculopathy in recipients of heart transplants (HTs). There are limited data on longitudinal change and predictors of MFR following HT. METHODS: We conducted a retrospective analysis of HT recipients undergoing PET myocardial perfusion imaging at an academic center. Multivariable linear and Cox regression models were constructed to identify longitudinal trends, predictors and the prognostic value of MFR after HT. RESULTS: Of HT recipients, 183 underwent 658 PET studies. The average MFR was 2.34 ± 0.70. MFR initially increased during the first 3 years following HT (+ 0.12 per year; P = 0.01) before beginning to decline at an annual rate of -0.06 per year (P < 0.001). MFR declines preceding acute rejection and improves after treatment. Treatment with mammalian target of rapamycin (mTOR) inhibitors (37.2%) slowed the rate of annual MFR decline (P = 0.03). Higher-intensity statin therapy was associated with improved MFR. Longer time post-transplant (P < 0.001), hypertension (P < 0.001), chronic kidney disease (P < 0.001), diabetes mellitus (P = 0.038), antibody-mediated rejection (P = 0.040), and cytomegalovirus infection (P = 0.034) were associated with reduced MFR. Reduced MFR (HR: 7.6, 95% CI: 4.4-13.4; P < 0.001) and PET-defined ischemia (HR: 2.3, 95% CI: 1.4-3.9; P < 0.001) were associated with a higher risk of the composite outcome of mortality, retransplantation, heart failure hospitalization, acute coronary syndrome, or revascularization. CONCLUSION: MFR declines after the third post-transplant year and is prognostic for cardiovascular events. Cardiometabolic risk-factor modification and treatment with higher-intensity statin therapy and mechanistic target of rapamycin inhibitors are associated with a higher MFR.

18.
Eur J Nucl Med Mol Imaging ; 51(1): 136-146, 2023 12.
Article in English | MEDLINE | ID: mdl-37807004

ABSTRACT

PURPOSE: Distinguishing obstructive epicardial coronary artery disease (CAD) from microvascular dysfunction and diffuse atherosclerosis would be of immense benefit clinically. However, quantitative measures of absolute myocardial blood flow (MBF) integrate the effects of focal epicardial stenosis, diffuse atherosclerosis, and microvascular dysfunction. In this study, MFR and relative perfusion quantification were combined to create integrated MFR (iMFR) which was evaluated using data from a large clinical registry and an international multi-center trial and validated against invasive coronary angiography (ICA). METHODS: This study included 1,044 clinical patients referred for 82Rb rest/stress positron emission tomography myocardial perfusion imaging and ICA, along with 231 patients from the Flurpiridaz 301 trial (clinicaltrials.gov NCT01347710). MFR and relative perfusion quantification were combined to create an iMFR map. The incremental value of iMFR was evaluated for diagnosis of obstructive stenosis, adjusted for patient demographics and pre-test probability of CAD. Models for high-risk anatomy (left main or three-vessel disease) were also constructed. RESULTS: iMFR parameters of focally impaired perfusion resulted in best fitting diagnostic models. Receiver-operating characteristic analysis showed a slight improvement compared to standard quantitative perfusion approaches (AUC 0.824 vs. 0.809). Focally impaired perfusion was also associated with high-risk CAD anatomy (OR 1.40 for extent, and OR 2.40 for decreasing mean MFR). Diffusely impaired perfusion was associated with lower likelihood of obstructive CAD, and, in the absence of transient ischemic dilation (TID), with lower likelihood of high-risk CAD anatomy. CONCLUSIONS: Focally impaired perfusion extent derived from iMFR assessment is a powerful incremental predictor of obstructive CAD while diffusely impaired perfusion extent can help rule out obstructive and high-risk CAD in the absence of TID.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Myocardial Perfusion Imaging , Humans , Constriction, Pathologic , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Circulation , Myocardial Perfusion Imaging/methods , Positron-Emission Tomography/methods , Multicenter Studies as Topic , Clinical Trials as Topic
19.
J Am Heart Assoc ; 12(21): e029980, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37889181

ABSTRACT

BACKGROUND: While exercise impairments are central to symptoms and diagnosis of heart failure with preserved ejection fraction (HFpEF), prior studies of HFpEF biomarkers have mostly focused on resting phenotypes. We combined precise exercise phenotypes with cardiovascular proteomics to identify protein signatures of HFpEF exercise responses and new potential therapeutic targets. METHODS AND RESULTS: We analyzed 277 proteins (Olink) in 151 individuals (N=103 HFpEF, 48 controls; 62±11 years; 56% women) with cardiopulmonary exercise testing with invasive monitoring. Using ridge regression adjusted for age/sex, we defined proteomic signatures of 5 physiological variables involved in HFpEF: peak oxygen uptake, peak cardiac output, pulmonary capillary wedge pressure/cardiac output slope, peak pulmonary vascular resistance, and peak peripheral O2 extraction. Multiprotein signatures of each of the exercise phenotypes captured a significant proportion of variance in respective exercise phenotypes. Interrogating the importance (ridge coefficient magnitude) of specific proteins in each signature highlighted proteins with putative links to HFpEF pathophysiology (eg, inflammatory, profibrotic proteins), and novel proteins linked to distinct physiologies (eg, proteins involved in multiorgan [kidney, liver, muscle, adipose] health) were implicated in impaired O2 extraction. In a separate sample (N=522, 261 HF events), proteomic signatures of peak oxygen uptake and pulmonary capillary wedge pressure/cardiac output slope were associated with incident HFpEF (odds ratios, 0.67 [95% CI, 0.50-0.90] and 1.43 [95% CI, 1.11-1.85], respectively) with adjustment for clinical factors and B-type natriuretic peptides. CONCLUSIONS: The cardiovascular proteome is associated with precision exercise phenotypes in HFpEF, suggesting novel mechanistic targets and potential methods for risk stratification to prevent HFpEF early in its pathogenesis.


Subject(s)
Heart Failure , Humans , Female , Male , Stroke Volume/physiology , Pilot Projects , Proteomics , Phenotype , Oxygen/metabolism , Exercise Test/methods , Exercise Tolerance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...